STRONGLY TRANSITIVE GEOMETRIC SPACES ASSOCIATED WITH (m,n)-ARY HYPERMODULES
نویسندگان
چکیده
In this paper, we define the strongly compatible relation ε on the (m,n)ary hypermodule M, so that the quotient (M/ε∗, h/ε∗) is an (m,n)-ary module over the fundamental (m,n)-ary ring (R/Γ∗, f/Γ∗, g/Γ∗). Also, we determine a family P (M) of subsets of an (m,n)-ary hypermodule M and we give a sufficient condition such that the geometric space (M,P (M)) is strongly transitive. Mathematics Subject Classification 2010: 16Y99, 20N20.
منابع مشابه
On exact category of $(m, n)$-ary hypermodules
We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of a...
متن کاملCanonical (m,n)−ary hypermodules over Krasner (m,n)−ary hyperrings
The aim of this research work is to define and characterize a new class of n-ary multialgebra that may be called canonical (m, n)&minus hypermodules. These are a generalization of canonical n-ary hypergroups, that is a generalization of hypermodules in the sense of canonical and a subclasses of (m, n)&minusary hypermodules. In addition, three isomorphism theorems of module theory and canonical ...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملApplication of fundamental relations on n-ary polygroups
The class of $n$-ary polygroups is a certain subclass of $n$-ary hypergroups, a generalization of D{"o}rnte $n$-arygroups and a generalization of polygroups. The$beta^*$-relation and the $gamma^*$-relation are the smallestequivalence relations on an $n$-ary polygroup $P$ such that$P/beta^*$ and $P/gamma^*$ are an $n$-ary group and acommutative $n$-ary group, respectively. We use the $beta^*$-...
متن کاملStrongly Transitive Geometric Spaces: Applications to Hyperrings
In this paper, we determine two families R and G of subsets of a hyperring R and sufficient conditions such that two geometric spaces (R,R) and (R,G) are strongly transitive. Moreover, we prove that the relations Γ and α are strongly regular equivalence relations on a hyperfield or a hyperring such that (R,+) has an identity element.
متن کامل